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1. Information visualisation and health  

At the core of multiple discussions on visualisation (M. Chen et al., 2014; Engelbrecht et al., 2015; 
Kochhar et al., 1991) lies the concept that a visualisation solution should culminate in meaningful 
insights. Even when the emphasis of a visualisation task is on gaining insights, it remains challenging 
to ascertain the nature, extent, or accuracy of the acquired insights (M. Chen et al., 2014). Despite 
there being many interpretations of visualisation, Chen et al. (2014) provide the most complete 
description:  

 

"Visualisation (or more precisely, computer-supported data visualisation) is a study of transformation 
from data to visual representations to facilitate effective and efficient cognitive processes in 
performing tasks involving data. The fundamental measure for effectiveness is correctness and that 
for efficiency is the time required for accomplishing a task." (M. Chen et al., 2014) 

 

The field of Information Visualisation focuses on designing and developing representations that 
resonate with viewers' mental models, facilitating comprehension of data and fostering new insights 
(Spence, 2001), enabling analytical reasoning within constrained timeframes, providing viewers with 
enhanced capacities to assess, strategies, and make decisions, allowing individuals to grasp vast 
amounts of information concurrently while succinctly summarising analytical outcomes (Sharma et al., 
2018). Information visualisation entails converting raw, lower-level data into visual representations 
that convey extracted meanings derived from the data (Engelbrecht et al., 2015). Therefore, 
information visualisation involves the graphical representation of data or information, utilising visual 
elements such as charts, graphs, and maps to enhance understanding (Engelbrecht et al., 2015; M. 
C. Kim et al., 2016; Sharma et al., 2018). Visualisation aims to convey information effectively, 
enabling users to discover patterns, trends, and insights within datasets (Engelbrecht et al., 2015; M. 
C. Kim et al., 2016). This approach capitalises on the innate ability of the human visual system to 
process information swiftly, surpassing the comprehension achieved through textual or numerical 
formats (M. C. Kim et al., 2016). 

 

Information visualisation is a powerful tool across various domains, such as healthcare, business, 
science, and technology, by making intricate concepts more accessible and interpretable (Jaspersoft, 
2024; M. C. Kim et al., 2016). In healthcare, information visualisation is used to represent patient 
data, medical images, and clinical outcomes (Kochhar et al., 1991; Ploderer et al., 2016; Sharma et 
al., 2018). It aids healthcare professionals in quickly grasping complex medical information, facilitating 
better decision-making and improving overall patient care (Engelbrecht et al., 2015). 

 

The following sections will systematically examine the intersection of information visualisation with key 
components of healthcare. The aim is to analyse how information visualisation techniques contribute 
to understanding patient health data and bolster the effectiveness of clinical decision support tools.   

  

1.1. Information visualisation and patient health data (self-tracking / self-
care)  

[to be concluded by CMU] 



Interpreting health data poses a challenge, particularly as individuals become more health-conscious 
and take more responsibility for their well-being. Those diagnosed with specific conditions must 
comprehend and manage these conditions to improve their health and overall quality of life (Faisal et 
al., 2013). Understanding one's health conditions also enables effective communication with health 
professionals (Ploderer et al., 2016). In various countries, individuals are gaining more control over 
and access to their health records, often encouraged by healthcare services promoting principles like 
"no decision about me without me" (Faisal et al., 2013).  

  

1.2. Information visualisation and clinical decision support tools  
The contemporary healthcare landscape, marked by rapid decision-making (Ramalho et al., 2023), 
has witnessed decades of advancements enhancing the quality of life and care, resulting in increased 
longevity (Wilmoth et al., 2023) and a rising population of chronic patients (Ansah & Chiu, 2023). The 
corresponding growth in the number of healthcare professionals has not kept pace (Patlak & Levit, 
2009), resulting in healthcare professionals managing elevated volumes of patients (Khairat et al., 
2018).  

When handling patients' data, healthcare professionals encounter diverse information, including 
examination results, patient-reported conditions, treatment plans, and protocols (Faisal et al., 2013). 
Comprehending and synthesising the extensive array of information poses a significant challenge 
(Faisal et al., 2013; Khairat et al., 2018). Medical studies reveal that understanding health data, 
particularly when in textual form (M. C. Kim et al., 2016), often necessitates additional effort to make 
sense of the information and apply it in practice (Ladan et al., 2018).  

Incorporating Clinical Decision Support (CDS) systems into healthcare practices introduces a toolset 
for navigating the complexities of patient data. CDS encompasses various techniques and 
technologies designed to assist healthcare professionals in making informed decisions at the point of 
care. These systems leverage data analysis and visualisation to provide actionable insights, ultimately 
enhancing clinical decision-making efficiency, accuracy, and effectiveness (Khairat et al., 2018). 

Information visualisation is an essential component of CDS, transforming complex medical data into 
understandable insights. Visualisations of CDS aid healthcare professionals in recalling similar 
patients' cases, exploring hypothetical scenarios, detecting inadequate treatments, tracking 
treatments, and supporting adherence to guidelines (Dagliati et al., 2018; Mehrdad et al., 2019). CDS 
utilise various information visualisation techniques to enhance the comprehension of complex medical 
data and facilitate informed decision-making. These techniques encompass a range of visual 
representations, including graphs and charts for illustrating trends, heatmaps for highlighting data 
intensity variations, and time series visualisations to depict temporal changes (Mehrdad et al., 
2019). Treemaps represent hierarchical structures, 3D visualisations offer comprehensive views of 
medical data, and flowcharts map out clinical pathways (Mehrdad et al., 2019). Network visualisations 
depict relationships between medical entities, spatial visualisations display geographical information, 
and icon arrays represent data points visually (Mehrdad et al., 2019). Dashboards often integrate data 
from multiple sources, such as EHRs, administrative databases, and other information systems, 
providing a visual representation of key performance indicators in a single report (Dagliati et al., 2018; 
Mehrdad et al., 2019; Wilbanks & Langford, 2014). The objective of dashboards is to offer a concise 
overview of an array of data, resulting in several types of visualisations designed for diverse 
applications (Dagliati et al., 2018; Mehrdad et al., 2019; Wilbanks & Langford, 2014). The dashboards 
encompass a variety of represented data, including Vitals, Medication, Lab Test Results, Structured 
Notes, Unstructured Notes, and Personal Data (Ramalho et al., 2023). 

 



The Electronic Health Record (EHR), a digital repository of an individual's medical information (Park 
et al., 2019), serves an important role in the systematic organisation and storage of comprehensive 
health records (ISO.org, 2023). Potential advantages of Electronic Health Records EHR include 
enhancing clinical decision-making, aiding in triage decisions, fostering collaboration within the care 
team (inclusive of patients), and boosting productivity through task automation (Rudin et al., 2020). 
However, EHRs are intricate and imperfect tools which can be configured, utilised, and improved in 
numerous, sometimes inefficient, ways (Kashfi, 2011; Rudin et al., 2020; West et al., 2015).  

The integration of CDS into EHRs enhances healthcare quality compared to when these systems 
operate independently (Kashfi, 2011; Tcheng, 2017). CDS encompasses the use of diverse computer 
system tools to augment the decision-making capabilities of healthcare professionals within the 
clinical workflow (HealthIT.gov, 2023). CDS aim to address distinct objectives, falling into three 
overarching categories of use: (1) improvement of decision-making, (2) early detection of diseases 
and treatment, and (3) patient-centric care (Dagliati et al., 2018; Mehrdad et al., 2019; Ramalho et al., 
2023). According to Mehrdad et al. (2019), the most prevalent purpose for CDS involves enhancing 
decision-making processes by leveraging diverse data sources to provide automated insights, 
evidence-based support, and wellness decision assistance (Ramalho et al., 2023). This category also 
encompasses monitoring individuals using intelligent systems, improving accuracy, supporting clinical 
workflows, and monitoring clinical pathways (Mehrdad et al., 2019).  

The second category relates to early disease detection and treatment. The aim is to provide 
healthcare professionals with insights into specific health aspects, enabling them to make informed 
treatment adjustments or decisions (Ramalho et al., 2023). Here, CDS comprise systems that display 
real-time or evolving data used for disease monitoring, report continuous updates on specific 
conditions, visualise signal data for analysis, and recommend medical decisions (Mehrdad et al., 
2019; Ramalho et al., 2023). The applications extend to assisting in prescribing appropriate antibiotic 
treatments, adopting and tracking healthier behaviours, monitoring patient safety, identifying risks for 
adverse events, and assessing surgery risks (Mehrdad et al., 2019).  

The third category focuses on patient-centric healthcare, representing a smaller yet significant portion 
of CDS applications (Mehrdad et al., 2019). Here, CDS contribute to planning post-discharge care 
coordination and encouraging patients to actively participate in their health and treatment (Mehrdad et 
al., 2019),  aiding clinicians in identifying potential issues during patient visits (Ramalho et al., 2023). 
By aligning patient values with certain normative standards, these CDSs facilitate the identification of 
deviations or values falling below the expected range (Ramalho et al., 2023).  

1.2.1. Impact and Challenges of Information Visualisation and Clinical Decision 
Support  

Information visualisation through CDS has seen progress, offering clinicians a transformative 
approach to decision-making. The customizability inherent in some visualisation dashboards allows 
healthcare professionals to tailor information displays, promoting individualised user experiences and 
enhancing overall satisfaction (Wilbanks & Langford, 2014). Moreover, CDSs contribute to decreased 
time spent on data gathering, reducing cognitive load and improving situation awareness, thereby 
streamlining clinical workflows (Faiola et al., 2015; Khairat et al., 2018).  

 

Information visualisation is vital for healthcare professionals in data analysis and patient diagnosis. 
Unlike information conveyed verbally or in textual format, visually presented information can be 
quickly assimilated by humans (Sharma et al., 2018). The visual phenomenon is believed to trigger 
the recall of similar past cases into short-term memory for analytical processing (Sharma et al., 2018).  

 



Effective information visualisation enhances cognitive processes by offering computer-supported 
visual representations of patient data (Faiola et al., 2015). The primary goal of visualisation is to 
facilitate the swift assimilation of information, recognise patterns, and derive diagnostic insights from 
extensive datasets (Faiola et al., 2015). Therefore, providing health professionals with suitable 
visualisation systems is essential to mitigate user errors and alleviate cognitive load (Faiola et al., 
2015).  

However, these promising strides coexist with challenges. Ploderer et al. (2016) found that 
visualisations which are time-consuming to analyse are overlooked despite offering more insight into 
a patient's health. Such visualisations are perceived as superfluous, raising concerns about the 
accuracy of the data without contextual patient information (Ploderer et al., 2016). Lesselroth & 
Pieczkiewicz (2011) point out that the heterogeneous nature of clinical data poses a significant hurdle, 
hindering the seamless integration of information within CDSs. The dispersed data stored across 
diverse systems further complicates efforts to establish a unified, comprehensive view for healthcare 
professionals (Lesselroth & Pieczkiewicz, 2011). Wilbanks & Langford (2014) found that sociocultural 
factors, such as clinician anxiety about electronic surveillance and resistance to unalterable key 
performance indicators, introduce complexities in effectively implementing visualisation dashboards. 

Additionally, Khairat et al. (2018) and Wilbanks & Langford (2014) found usability concerns emerging 
prominently in the CDSs landscape. The potential for information overload and decreased acceptance 
among clinicians necessitates a thoughtful approach to interface design and the ability to filter out 
non-pertinent information (Khairat et al., 2018; Wilbanks & Langford, 2014). These unaddressed 
challenges may undermine the intended benefits of CDSs, impacting their integration into routine 
clinical practices.  

 

1.3. Case Studies  
Healthcare professionals often contend with heavy patient loads and time constraints (Khairat et al., 
2018). Lack of proper understanding of clinical data could elevate the risk of misdiagnosis. Newman-
Toker et al. 2022 estimate that within the 130 million annual emergency department (ED) visits in the 
United States, approximately 7.4 million patients (5.7%) experience misdiagnosis, 2.6 million patients 
(2.0%) face adverse events due to misdiagnosis, and around 370,000 patients (0.3%) endure serious 
harm, such as disability or death, resulting from diagnostic errors.  

Zhang et al. (2013) introduced a framework applying the Five Ws concept (who, when, what, where, 
and why) in healthcare informatics, particularly for electronic medical record (EMR) visualisation. The 
study aimed to enhance the usability of information on EMRs by providing a comprehensive overview 
and detail-on-demand (Zhang et al., 2013). The "who" was represented as a radial sunburst 
visualisation of the patient's health conditions, integrated with a stylised body map indicating the 
"where" (Zhang et al., 2013). The "when, what, why" was depicted as a multistage flow chart covering 
date, symptom, data, diagnosis, treatment, and outcome (Zhang et al., 2013). The system efficiently 
accessed patient information, significantly reducing the time and effort for diagnostic conclusions 
(Zhang et al., 2013). A pilot user study with physicians and health informatics professionals revealed 
positive responses, emphasising the system's rapid adaptation, usefulness, and potential time-saving 
benefits (Zhang et al., 2013). Physicians accurately answered questions about patient history, and 
while preferences leaned towards sequential layouts, the radial layout's unique features, like browsing 
and interaction, were appreciated (Zhang et al., 2013). User feedback included suggestions for 
improving text readability, manual link addition, and interface interactions (Zhang et al., 2013). The 
study concluded by addressing limitations, such as text string length constraints, scalability concerns 
for large datasets, and potential extensions for richer medical information beyond standardised codes 
(Zhang et al., 2013). 



 

Ploderer et al. (2016) conducted a study on developing and evaluating the "ArmSleeve" system to 
support occupational therapists' rehabilitation work with stroke patients. The study conducted three 
interconnected studies to address therapists' challenges in understanding patients' upper limb 
movements in daily life. Therapists were interviewed to understand their current rehabilitation 
practices (Ploderer et al., 2016). Subsequently, the "ArmSleeve Sensor" was designed to monitor 
patients' upper limb movements, followed by the creation and evaluation of the "ArmSleeve 
Dashboard" to visualise the collected data (Ploderer et al., 2016). The dashboard comprised four 
pages: overview, timeline, joint-based visualisation, and heat maps. The researchers emphasised the 
importance of collecting objective data for assessing exercises and activities outside therapy  
(Ploderer et al., 2016). The visualisations proved beneficial, offering therapists insights into patients' 
arm motions, educating patients, and aiding communication with other clinicians  (Ploderer et al., 
2016). However, the therapist expressed a need for contextual information about patients' home 
activities, and visualisations that were time-consuming to evaluate were disliked and often overlooked  
(Ploderer et al., 2016). 

 

Rahman et al. (2016) study introduces GEAR (GamE Assisted Rehabilitation), a mobile system 
designed to enhance patient engagement and adherence to prescribed exercises, mainly focusing on 
frozen shoulder patients. The system integrated a smart wearable wristband with a sensor unit, a 
smartphone game application, a back-end cloud database, and a dashboard for physiotherapists. The 
study involved developing and evaluating GEAR Analytics, a clinician dashboard that leverages D3 
(Data-Driven Documents) for data visualisation with a high level of customisation (Rahman et al., 
2016). The visualisations, presented through a minimalist design, enable clinicians to analyse patient-
specific exercise data, identifying trends and indicators crucial for targeted interventions (Rahman et 
al., 2016). The study highlighted the significance of interactive visualisations in extending clinicians' 
cognition and improving their ability to track gradual and sudden changes in patients' exercise 
patterns (Rahman et al., 2016). Clinician feedback highlighted the dashboard's effectiveness in 
facilitating decision-making and proposing follow-up treatments (Rahman et al., 2016). Despite 
positive feedback, the study acknowledges areas for improvement, suggesting incorporating more 
domain-specific terminology and adding a message feature for direct clinician-patient communication 
(Rahman et al., 2016).  

Dagliati et al. (2018) focused on the development and impact assessment of a dashboard-based 
system within the European Union MOSAIC (Models and Simulation Techniques for Discovering 
Diabetes Influence Factors) project for managing type 2 diabetes. The research involved the 
integration of predictive modelling, longitudinal data analytics, and the reuse of data from hospitals 
and public health repositories (Dagliati et al., 2018). The dashboard comprised two components: one 
for CDS during follow-up consultations and another for outcome assessment on populations of 
interest (ORSS) (Dagliati et al., 2018). Visualisations included a "traffic light" metaphor for metabolic 
control evaluation, temporal abstractions for long-term complication episodes, and graphical displays 
of drug purchases (Dagliati et al., 2018). The system's positive outcome led to shorter visit durations 
and increased screening exams (Dagliati et al., 2018). Future adjustments may involve refining 
visualisations and user interface functionalities to address specific clinical questions (Dagliati et al., 
2018). 

Sharma et al. (2018) conducted a study addressing the complexities of clinical reasoning in 
healthcare settings, particularly in scenarios involving multiple morbidities, diverse patient contexts, 
and extensive evidence repositories. The study aimed to enhance knowledge transfer by visually 
presenting relevant information to patients and healthcare professionals. The study developed four 
diagrams for different purposes: Diagnosis Reasoning Diagram, Treatment Reasoning Diagram, 



Snapshot Diagram, and Pathway Diagram (Sharma et al., 2018). These diagrams aimed to support 
diagnostic and treatment decision-making, provide a snapshot of a patient's health status, and 
illustrate trajectories of health events over time (Sharma et al., 2018). The study applied Gestalt 
principles to assess the diagrams' coherence and gathered feedback from stakeholders, including a 
patient representative, a healthcare organisation quality manager, and a multidisciplinary meeting 
healthcare professional (Sharma et al., 2018). While participants recognised the potential benefits of 
specific diagrams, concerns were raised about the intuitive clarity, elements' availability from 
electronic health records, and the need for context in understanding the diagrams' purpose (Sharma 
et al., 2018). 

1.3.1. Integration of Visualisation in Ophthalmology 

Diseases affecting the retina, including age-related macular degeneration (AMD), diabetic retinopathy 
(DR), and glaucoma (GLA), are the primary contributors to blindness in individuals aged 60 years and 
above. Ophthalmologists often contend with the challenge of coordinating workflows involving multiple 
Visual Analytics (VA) tools for diagnosis (Nonnemann et al., 2021; Röhlig et al., 2023). 

Nonnemann et al. (2021) and Röhlig et al., 2023 believe that there is a need for the unification of User 
Interfaces (UIs) to enhance the operational efficiency of ophthalmologists. Some approaches, such as 
applications like Dashiki (McKeon, 2009), involve integrating multiple views within a single interface 
through web-based mashups or webcharts (Röhlig et al., 2023). While effective, this method has 
limitations, with visual overload increasing as the number of integrated views grows. Alternatively, 
coupling views, like WinCuts (Tan et al., 2004) and Façades (Stuerzlinger et al., 2006), focus on 
loosely connecting independent views for interactive assembly into a common interface (Röhlig et al., 
2023). This method replicates arbitrary view regions in a combined interface, emphasising task-
related areas (Röhlig et al., 2023). Alternative approaches utilise visual connections between 
standalone views to streamline their association, either implicitly or explicitly (Röhlig et al., 2023). 

Röhlig et al. (2023) addressed the challenges faced by ophthalmologists in the analysis of retinal 
data, where the limited integration of workflow steps, tools, and data leads to increased cognitive 
load. The primary goal was to reduce the overhead associated with managing tools and data during 
workflow execution, allowing ophthalmologists to focus on data analysis steps in cross-sectional 
studies (Röhlig et al., 2023). The result was a visualisation-supported tool-chaining approach to 
streamline the workflow, providing access to necessary tools and data while organising tool UIs on a 
screen (Röhlig et al., 2023). The study received positive feedback from ophthalmologists regarding 
the visual representation of the workflow, unified UI access to tools and data, flexibility in arranging 
tool views, and reduced coordination efforts in cross-sectional studies (Röhlig et al., 2023). Users 
appreciated summarising results directly in the UI and reducing coordination overhead in cross-
sectional studies (Röhlig et al., 2023). However, there is a need to synchronise tools on the parameter 
level, including visualisation-specific parameters, for consistent output interpretation (Röhlig et al., 
2023).  

1.4. Guidelines for Integrating Information Visualisation and CDS 
Engelbrecht et al. (2015) guidelines for the development of information visualisation solutions 
encompass practical methods to enhance data mapping to visual objects, reduction of user 
interactions, flexibility in approach, incorporation of supplementary information, spatial organisation, 
maintenance of design consistency, minimisation of cognitive load, provision of alternative 
information, elimination of distractions, and exploration of dataset size reduction. Sharma et al. (2018) 
argue that approaching visualisation design from a design theoretical perspective yields diverse 
visualisations compared to existing ones. Sharma et al. (2018) sought visualisations for distinct 
purposes, including supporting healthcare professionals in reaching diagnoses, making diagnostic 



reasoning explicit, aiding in treatment decisions, and enabling patient understanding. Therefore, when 
it comes to healthcare, visualisation can encompass diagnosis reasoning diagrams, treatment 
reasoning diagrams, snapshot diagrams reflecting diagnostic and treatment status at a point in time, 
and pathway diagrams illustrating trajectories through time of health events (Sharma et al., 2018). 

Sharma et al. (2018) suggest using Gestalt principles to assess the effectiveness of designed 
diagrams. Gestalt psychology, encapsulating the concept of a "unified whole," involves the human 
capacity to combine visual elements into a logical construct through specific principles (Sharma et al., 
2018). Gestalt principles include "Proximity", "Similarity", "Continuation", "Closure," "Balance", 
"Simplicity", "Focal Point", and "Isomorphic Correspondence" (Graham, 2008; Lester, 2003; Sharma 
et al., 2018; Smith-Gratto & Fisher, 1999). Achieving a state of Gestalt in the design is essential, 
where the foreground and background blend in a figure/ground relationship to provide a clearer 
picture  (Sharma et al., 2018; Smith-Gratto & Fisher, 1999). 

Ramalho et al. (2023) underscore the importance of aligning dashboard design with clinical 
workflows, adapting visualisations for comprehension, and considering single-page layouts to reduce 
cognitive load. Additionally, they emphasise the need to mitigate alert fatigue, implement mechanisms 
for data insertion, and ensure clinician training on dashboard usage (Ramalho et al., 2023). 
Personalisation options, iterative design based on user testing, and compatibility with various 
browsers and networks are also highlighted as essential considerations for effective dashboard 
design in healthcare settings (Ramalho et al., 2023).



 

Project Name (remove) Study  Medical Field Technology  Visualisations Used Outcome  

ArmSleeve   Ploderer et al. 
(2016) 

Occupational 
Therapy 
(Rehabilitation) 

 Patient: Wearable (upper 
limp sensor) 

 

Health Professional: 
Dashboard 

Dashboard: Overview 
page (charts and bar 
graphs), timeline, joint-
based visualisations and 
heat maps.  

 

(Based on needs of OT 
captured during semi-
structured interviews.) 

 

 

 

Visualisations gave OT an 
understanding of how patients 
moved their arm at home.  

 

Visualisations helped to 
educate patients and engage 
with other clinicians to 
advocate for patients to get 
the required resources. 

 

OTs felt that context about 
the home activities was 
needed. Visualisations that 
would take too long to access 
were disliked and overlooked. 

 MOSAIC  Dagliati et al. 
(2018) 

Diabetics  Dashboard Dashboard: visualises 
drug purchases and 
compares patient 
behaviour against the 
population.  

 

ORSS dashboard includes 
charts, care-flow mining 
(CFM) for clinical 

Clinical activities resulted in 
shorter visit durations and 
increased screening exams 
for complications.  

 

CDSS was deemed effective 
in supporting therapeutic 
decisions.  



pathways, and timelines 
for complexity care flows.  

 

CDSS was able to identify 
patient subgroups and trends, 
facilitating efficient decision-
making.  

 

The Outcome Assessment 
and Research Support 
System (ORSS) provided 
valuable insights for 
healthcare managers, 
enabling demographic and 
clinical variable analyses.  

 

The evaluation emphasised 
the system's efficiency in 
supporting clinical decisions, 
optimising visit duration, and 
enhancing diabetes 
management through 
integrated data and visual 
analytics. 

Unified UI Röhlig et al. (2023 Ophthalmology Dashboard: Visualisation-
supported tool-chaining 
approach. 

Various visualisations for 
retinal data analysis (e.g., 
charts, graphs, heat 
maps). 

 

User feedback was positive, 
citing benefits in workflow 
management and 
visualisation access. 



Unified UI visualising the 
workflow and coordination 
graph. 

 

Interviews with 
ophthalmologists and 
observations of their work 
were conducted to gain a 
comprehensive 
understanding of the 
current practices in eye 
analysis. 

GEAR Rahman et al. 
(2016) 

Occupational 
Therapy  
(Rehabilitation) 

Patient: Wearable 
(wristband) 

 

Health Professional: 
Dashboard 

Dashboard: Overview 
page showing macro, 
meso and micro level data 
(charts and bar graphs), 
timeline, and joint-based 
visualisations. 

GEAR Analytics facilitated 
clinician decision-making, 
offering visualisations for 
patient-specific data. 

 

Clinicians suggested adding a 
message feature for direct 
patient feedback and using 
more specific domain 
terminology to enhance 
mapping with current practice. 

 

The minimalist design and 
responsiveness of the 
dashboard were well-
received. The visualisations, 



including customisable ones 
implemented with D3, proved 
clear and effective in tracking 
patients' exercise progress 
over time. 

Five Ws Zhang et al. (2013) Health Informatics Dashboard: The system 
introduced is a framework 
utilising visual information 
displays to represent the 
Five Ws (who, when, 
what, where, why) within a 
healthcare informatics 
application. It interfaces 
with an Electronic Medical 
Record (EMR) database. 

Dashboard: 

Radial sunburst 
visualisation representing 
the patient's health 
conditions. 

 

A stylised body map 
integrated with the radial 
sunburst to show 
anatomical locations. 

 

Multistage flow chart 
representing the reasoning 
chain (date, symptom, 
data, diagnosis, treatment, 
outcome). 

 

The system received positive 
feedback from physicians and 
health informatics 
professionals. Medical coders 
also endorsed the system, 
noting significant time savings 
and improved coding 
accuracy. 

 

Physicians found the system 
different from what they were 
accustomed to but became 
comfortable quickly. The 
system's features, including 
the browsing highlight mode, 
were appreciated. 

 

Main suggestions for 
improvement included pre-
filters for extensive data and 
reducing the size of the body 
map in the radial display. 



 Sharma et al. 
(2018) 

Health Informatics Dashboard: Automated 
diagram generation from 
digital repositories 

Diagnosis Reasoning 
Diagram, Treatment 
Reasoning Diagram, 
Snapshot Diagram, 
Pathway Diagram. 

 

They conducted a study to 
enhance clinical reasoning 
through visual representation. 
Developed four diagram types 
for different settings, aiming 
to support diagnostic and 
treatment decisions, provide a 
snapshot of a patient's health 
status, and illustrate 
trajectories of health events. 
Applied Gestalt principles for 
coherence. 

 

Stakeholder feedback 
indicated potential benefits 
but highlighted concerns 
about clarity, element 
availability from electronic 
health records, and the need 
for contextual understanding. 

 

Envisions automated diagram 
generation for clinical use, 
acknowledging the need for 
refinement and empirical 
validation. 
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1.5. Information Visualisation and XAI  
The increase in the use of artificial intelligence (AI) (Islam et al., 2022) and machine learning 
(ML) algorithms highlights the growing demand for transparent and comprehensible data 
visualisation techniques (Encarnação et al., 2022). Within this landscape, the concept of 
eXplainable Artificial Intelligence (XAI) has emerged, focusing on designing AI systems capable 
of providing clear and transparent explanations for their decisions and actions (Encarnação et 
al., 2022; Liao et al., 2020; Sure, 2023). The primary objective of XAI is to render the decision-
making processes of AI algorithms more understandable and interpretable for humans 
(Shneiderman, 2020). This objective is particularly important in domains where AI decisions 
significantly impact individuals' lives, such as healthcare. 

In the healthcare sector, the opacity of traditional machine learning models, especially in deep 
learning, raises concerns about the "black box" nature of these algorithms (Encarnação et al., 
2022; Shaban-Nejad et al., 2020). In critical decision-making scenarios, understanding the 
underlying logic of AI-generated conclusions is necessary to foster trust (Lopes et al., 2022), 
ensure accountability, and address ethical considerations (Shaban-Nejad et al., 2020).  

In recent years, there has been a surge in research focused on XAI, leading to extensive 
applications and deployments (Islam et al., 2022). Xu et al. (2019) identified three major 
stakeholders: users (clinicians) who interact with AI systems, individuals (patients) impacted by 
AI decisions, and developers responsible for creating AI systems and algorithms. For instance, 
consider a scenario where a medical practitioner relies on an AI system to generate diagnosis 
reports. By understanding the features within the input data that contribute to these AI-
generated reports and comprehending the specific data points or characteristics that influence 
the AI's diagnostic decisions, healthcare professionals can make more informed and accurate 
clinical judgments, directly impacting the patient's care.  

Transparency and interpretability in healthcare AI are vital for building trust among practitioners, 
ensuring patient safety, and facilitating informed decision-making (Encarnação et al., 2022). 
Nunes and Jannach (2017) draw a correlation between transparency and trust, suggesting that 
while the primary objective of the system's explanation facility may not be to cultivate trust 
directly, trust is anticipated to evolve as a natural consequence of transparency. Lipton (2018) 
Lipton suggests that trustworthiness may indicate confidence in the model's ability to perform 
effectively.  

Ooge et al. (2022) suggest leveraging visual analytics to bolster trust among users, as it can 
provide insights into algorithms through visualisation, interaction, shepherding, and direct 
explanations. Alicioglu and Sun (2022) proposed two concepts: visual interpretation (VI) and 
visual-based explainable artificial intelligence (vXAI). VI refers to the use of visualisation 
techniques within an interactive framework to help end-users comprehend deep neural models 
without relying on XAI methods. vXAI, on the other hand, involves combining visual 
explanations with XAI approaches within an interactive visual interface, aiming to enhance the 
understanding of deep learning models. 
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1.6. Applications of XAI in Healthcare 
Information visualisation and XAI applications in healthcare encompass various domains such 
as disease diagnosis, treatment recommendation, patient monitoring, and drug discovery 
(Encarnação et al., 2022; Islam et al., 2022; Manresa-Yee et al., 2021; Shaban-Nejad et al., 
2020). Researchers have proposed various strategies to make AI models more explainable by 
employing comprehensible text (Lipton, 2018), mathematical approaches (Ali et al., 2023), or 
visualisations (Ooge et al., 2022). The following is a review of various applications in healthcare 
where visualisations have been used to make AI more explainable in the healthcare context. 

1.6.1. Diagnostic Support  

A prominent application of XAI in healthcare is diagnostic support, where AI models assist 
clinicians in interpreting medical images (Zeineldin et al., 2022), detecting anomalies (Lamy et 
al., 2020), and predicting disease risk (Wang et al., 2019). XAI techniques such as attention 
mechanisms (Ali et al., 2023) and feature attribution (Schlegel & Keim, 2021) enable the 
visualisation and explanation of AI-generated diagnoses (Liu et al., 2017), assisting clinicians in 
understanding the rationale behind AI automated decisions. Zeineldin et al. (2022) introduced 
the NeuroXAI framework for brain image analysis, incorporating explanation methods within 
visualisation attention maps to facilitate the diagnosis and detection of brain tumours in clinical 
contexts. Suh et al. (2020) created and validated a decision-support tool with XAI to estimate 
the probability of prostate cancer (PCa) and clinically significant PCa (csPCa) before a prostate 
biopsy. SHAP values helped explain the interactions and significance of each parameter (Suh et 
al., 2020).  

1.6.2. Treatment Recommendation 

XAI is also utilised in treatment recommendation systems, helping clinicians personalise therapy 
plans based on patient-specific characteristics, clinical guidelines, and real-time data (Deng et 
al., 2022; Krzysiak et al., 2022). By providing interpretable insights into the underlying factors 
influencing treatment recommendations, XAI enhances clinical decision-making and supports 
evidence-based practice (Nagendran et al., 2023). Lamy et al. (2020) developed a system for 
antibiotic treatment decision support using an ontology-based approach. They learned a 
preference model from clinical guidelines and visualised antibiotic recommendations using 
rainbow boxes (Lamy et al., 2020).  

1.6.3. Drug Discovery 

In drug discovery and development, XAI techniques offer insights into the relationships between 
molecular structures (Ponzoni et al., 2023), drug efficacy (W. Chen et al., 2023), corrective 
measures, explanation of system failures, mitigate potential bias and error prediction 
(Alizadehsani et al., 2023). This understanding enables various applications such as drug 
design and repurposing, virtual screening, protein design, side effects, reaction prediction, drug 
bioactivity, improved regulation and other tasks (Alizadehsani et al., 2023; W. Chen et al., 
2023). The types of visualisation techniques used for drug discovery include heat map-based 
methods, colouring molecules methods, tree-based visualisation methods (Ponzoni et al., 
2023), knowledge graphs, molecular graphs, convolutional neural networks, 3D-atomic 
coordinates, recurrent neural networks, graph neural networks, and other additional 
visualisation strategies (Alizadehsani et al., 2023; Deng et al., 2022). Stokes et al. (2020) 
leveraged deep neural network models to predict antibacterial compounds from large chemical 
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libraries. The model identified halicin, a structurally distinct molecule, as a promising broad-
spectrum antibiotic candidate, which was found to be efficacious in treating bacterial infections, 
including those caused by antibiotic-resistant bacteria (Stokes et al., 2020).  

1.6.4. Patient Monitoring 

Remote patient monitoring benefits from XAI-driven algorithms analysing biometric data from 
wearable devices (Mankodiya et al., 2022), including physiological sensors (J.-K. Kim et al., 
2022), activity trackers (Ometov et al., 2021), smartwatches (Krzysiak et al., 2022) and mobile 
phones. Thus facilitating early detection of health issues, continuous monitoring for health 
assessment (Perez et al., 2019), personalised care (Krzysiak et al., 2022), sending alert 
messages to health services (Mankodiya et al., 2022), and predicting future health risks 
(Ometov et al., 2021). Time-series plots, heatmaps, scatter plots, SHAP plots, geographic 
mapping, and network graphs are among the visualisation tools utilised to depict patient data 
(J.-K. Kim et al., 2022; Mankodiya et al., 2022; Sure, 2023). Visualisation dashboards present 
insights and trends to healthcare providers, enabling proactive management of health 
conditions (Ploderer et al., 2016). Perez et al. (2019), using Apple ResearchKit (Apple Inc., 
2024), developed a model designed to identify atrial fibrillation by analysing heart rate data 
collected from Apple Watches. The model provided visual explanations highlighting irregular 
heart rhythms as indicators of AFib (atrial fibrillation) (Perez et al., 2019).  

Integrating XAI with visualisation techniques presents the potential to enhance healthcare by 
offering transparent and actionable insights derived from complex data sources. Applying XAI in 
diagnostic imaging, predictive analytics, drug discovery, and remote patient monitoring 
facilitates informed decision-making and personalised care. 

1.7. Benefits and Challenges of XAI in Healthcare 
XAI represents a noteworthy advancement within the healthcare domain, affording various 
advantages. Antoniadi et al. (2021) assert that XAI enhances decision confidence for clinicians, 
fostering hypotheses about causality and augmenting trustworthiness in the clinical workflow. 
Similarly, Das & Rad (2020) highlight that XAI has the potential to support specific rational 
reasoning processes and improve human workplace performance. Liao et al. (2020) and Wang 
et al. (2019) also emphasise that XAI's provision of diverse information and explanation types 
enriches decision confidence (and generates hypotheses for causality), mitigating decision 
biases and cognitive biases. 

 

The incorporation of XAI into CDSs has yielded several benefits. Vorm (2018) explores XAI's 
usability and acceptability, illustrating its potential to provide different information types, render 
intelligent systems more explainable, and enhance overall acceptability and trustworthiness. 
Moreover, Das & Rad (2020) state that the advantage of some XAI visualisation techniques is 
that they support specific rational reasoning processes, enabling CDSs to bolster decisions with 
understandable interpretations for users with or without ML expertise (Das & Rad, 2020; 
Kunapuli et al., 2018; Vorm, 2018).  

 

Notwithstanding the promising benefits, implementing XAI in healthcare encounters multifaceted 
challenges that necessitate judicious consideration and strategic solutions. A challenge in XAI is 
the task of transforming "black-box" AI and ML technologies into transparent, understandable 
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solutions (Antoniadi et al., 2021; Das & Rad, 2020; Encarnação et al., 2022). Encarnação et al. 
(2022)  emphasise the necessity of conveying trust and transparency to domain experts and 
end users. Antoniadi et al. (2021) delve into the challenges of implementing XAI in CDS, noting 
the absence of a universal definition of explainability and the subjective nature of interpretability.  

Das & Rad (2020) highlight critical flaws in XAI visualisations and interpretability techniques, 
emphasising the need to reconsider using visualisation techniques for mission-critical 
applications. The trade-off between interpretability and performance introduces complexities in 
developing fully transparent models that balance local (explainability for an individual case) and 
global (explainability of the entire model, including its operational processes and decision-
making mechanisms) explanations while enhancing accuracy and representations (Alicioglu & 
Sun, 2022; Saraswat et al., 2022). Nazar et al. (2021) also identified other key issues such as 
security, performance, vocabulary, evaluation of explanation, and generalisation.  

In drug discovery, there is a need for sufficient and high-quality data, addressing dataset 
imbalance, and formulating hypotheses for drug design (Alizadehsani et al., 2023; Deng et al., 
2022). Alizadehsani et al. (2023) found a lack of open-community platforms for improving model 
interpretations and sharing training data. Technical concerns include the effectiveness of 
molecular representations and the lack of standardised protocols (Deng et al., 2022). 
Alizadehsani et al. (2023)  add that XAI techniques often require customisation for specific 
applications and a deep understanding of the problem domain to determine which model 
decisions require further explanation and what types of answers are meaningful to users. 

Akrich (1992) examination of technology design brings to light a potential challenge in the 
context of XAI. Akrich (1992) focus on the dynamic interplay between designers and users 
reveals a crucial aspect: the anticipation of future users' interests, skills, motives, and 
behaviours, which is then embedded into the material technology through the creation of a 
"script" or "scenario." While this process allows for a representation of user interactions, the 
challenge arises in the potential discrepancy between the designer's projected user and the real 
user. Akrich (1992) emphasis on the continual back-and-forth interaction between these two 
entities during the iterative "description" process may introduce complexities in XAI applications. 
If the designer's assumptions about user behaviours deviate from the reality of user interactions, 
it could hinder the effectiveness and transparency of XAI systems (Akrich, 1992). Nunes and 
Jannach (2017) describe this distinction as perceived transparency (a user-perceived quality 
factor) versus transparency (an explanation purpose), suggesting that while the information 
presented to users may be perceived as illustrating the system's functionality, it may not always 
align with the system's actual operations. This is the issue with post hoc interpretability; while 
interpretations do not always elucidate how a system functions, they provide helpful information 
for its users (Lipton, 2018). This discrepancy raises concerns about the accuracy of user 
representations and the potential limitations in accommodating the diverse and unpredictable 
nature of real-world user behaviours within the design of XAI technologies. 

The literature reveals a duality in applying XAI in healthcare, showcasing substantial benefits in 
CDS and increased confidence while grappling with challenges related to security, 
interoperability, uncertainties, transparency, and the interpretability-performance trade-off. 
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1.8. Technological and Research Trends 
Current efforts concentrate on enhancing interpretability through techniques like feature 
importance analysis (Schlegel & Keim, 2021), local explanation methods (e.g., LIME, SHAP) 
(Dey et al., 2022), rule-based systems (Islam et al., 2022) and personalised explanations 
(Nunes & Jannach, 2017), while also emphasising model transparency through visualisation 
tools (Alicioglu & Sun, 2022; Ooge et al., 2022). Integration with clinical workflows is a key focus 
(Antoniadi et al., 2021; Ramalho et al., 2023), and continuous monitoring and feedback 
mechanisms are being developed to refine model performance over time (Encarnação et al., 
2022; Mankodiya et al., 2022; Perez et al., 2019).  

Research in XAI healthcare centres on fostering effective human-AI collaboration (Dey et al., 
2022; Wang et al., 2019), addressing ethical and regulatory challenges (Islam et al., 2022), and 
tailoring XAI methods to specific healthcare domains (Dey et al., 2022; Krzysiak et al., 2022).  

 

1.9. Future of XAI 
Islam et al. (2022) advocate for a shift in the direction of XAI towards Responsibly Reliable-AI 
(RRAI), incorporating components such as ethics, compassion, sensibility, trust, and security to 
enhance acceptability and efficiency among human agents. This paradigm shift towards RRAI is 
deemed necessary to make XAI systems more acceptable and efficient in human-centred 
applications (Islam et al., 2022). 

Nunes and Jannach (2017) highlight the need for further investigation into the relationship 
among stakeholder goals, user-perceived quality factors, and explanation purposes, 
emphasising the interrelated nature of these objectives. Additionally, exploring context-specific 
explanations tailored to user expertise and scenarios is important.  

The current state of XAI in healthcare reflects a dynamic landscape characterised by rapid 
advancements, interdisciplinary collaborations, and ongoing efforts to address technical, ethical, 
and regulatory challenges. By fostering transparency, interpretability, and trust in AI-driven 
healthcare solutions, XAI is promising to revolutionise medical practice, enhance clinical 
decision-making, and improve patient care. 
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2. Values and design of technology 

2.1. Human values and values in design  
Human values encompass enduring beliefs regarding desirable modes of behaviour or end-
states of being across various situations, societies, and cultural contexts (Rokeach, 1973, as 
cited in Iversen et al., 2012). Values are foundational principles that guide our actions, 
judgments and decisions and are intrinsic to our humanity (Iversen et al., 2012; Winter et al., 
2018). Values may evolve and manifest (Manders-Huits, 2011; Van Der Weij et al., 2023) 
through the use and misuse of technology (Friedman et al., 2002; Harper, 2008). 

The concept that technology can embody value is a notion that has been studied across 
multiple disciplines studying technology, society, and humanity (Flanagan et al., 2008; 
Friedman, 1997; Klenk, 2021; Winner, 1980). The defenders of the value-neutrality thesis, such 
as Pitt (2014), believe that "technological artefacts do not have, have embedded in them, or 
contain values". Pitt (2014) believes that human action ultimately determines the outcome rather 
than attributing moral responsibility directly to the artefacts themselves. Akrich (2006) 
challenges the notion that technology is separate from human values and highlights the 
importance of considering the broader socio-technical context in which technological artefacts 
exist and operate. Friedman (1997) states that technological features constrain or provoke 
human activity, yet they do not entirely determine it. Building on this idea, Klenk (2021) asserted 
that an artefact embodies value solely when facilitating valuable actions; thus, promoting such 
actions becomes justifiable. Miller (2021) introduces the Values-Principle, which suggests that if 
certain physical features of an artefact are required to perform a value-laden function effectively, 
then the artefact may be said to embody those values. 

Verbeek (2014) argues that these artefacts possess a form of interactive moral responsibility, 
suggesting they are not value-neutral but are intrinsically linked with moral decision-making. 
Conversely, others suggest that technological artefacts can embody values independently of 
possessing moral agency (Brey, 2014; Flanagan et al., 2008; Kroes & Verbeek, 2014). Some 
believe that technological artefacts may influence people's values and inherently represent 
themselves (Klenk, 2021; Kroes & Verbeek, 2014; Winner, 1980).  

There has been a growing emphasis on enhancing the user-friendliness of Information and 
Communication Technologies (ICTs) (Nielsen, 2000). The emphasis has primarily centred on 
improving the usability or the ease of use of technology whilst ensuring that the technology 
aligns with the values of its users (Fleischmann et al., 2015). In addressing potential ethical 
dilemmas associated with technology, scholars advocate for the early consideration of values 
during the design phase of new technological developments (Van Der Weij et al., 2023). 

Given the role of human values in both the use and design of technologies, it is important to 
adopt approaches that systematically integrate these values into the design process. Value 
Sensitive Design (VSD) is a framework that acknowledges the inherent connection between 
technology and values while providing methods for addressing ethical and moral concerns.  

2.2.  Value sensitive design 
In Value Sensitive Design (VSD), human values refer to what individuals and communities 
consider important and desirable in their lives, such as privacy, autonomy, fairness, and 
sustainability (Friedman et al., 2002). VSD also considers values in usability, conventions, and 
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personal preferences (Friedman et al., 2002). These values are not inherent in the technology 
itself but are shaped by social, cultural, and ethical considerations (Friedman et al., 2002). It 
recognises that technological systems can have significant impacts on individuals, communities, 
and society at large. Therefore, VSD emphasises the importance of considering ethical and 
moral values in technology development (Cummings, 2006).  

VDS is an approach to designing technology that integrates human values into the design 
process (Friedman et al., 2013; Poel & Kroes, 2014). Poel and Kroes (2014) identified three 
fundamental values inherent within the design process: the intended value, representing the 
designers' envisioned value; the embodied value, the value intentionally embedded within the 
artefact during design; and the realised value, reflecting the value that emerges during actual 
usage. In essence, VSD enables us to acknowledge the inherent value-laden nature of 
technology design, identify key decision points where values are relevant, analyse the values 
involved in specific design choices, and contemplate how these values should influence the 
design process (Schultz-Bergin, 2021). 

VSD applies a tripartite method consisting of three investigations: conceptual, empirical and 
technical (Cummings, 2006; Friedman, 2004; Friedman et al., 2002, 2013). These investigations 
build upon each other iteratively, resulting in a cohesive artefact that embodies values in its 
design (Winkler & Spiekermann, 2021). Conceptual investigations delve into defining and 
analysing values, considering (direct and indirect) stakeholders' perspectives and societal 
impacts (Cummings, 2006; Friedman, 2004). Empirical investigations involve observing and 
measuring human interactions with technology and evaluating how stakeholders prioritise 
values and usability considerations (Cummings, 2006; Friedman, 2004). Technical 
investigations focus on the inherent properties of technology, exploring how they support or 
hinder human values and designing systems to align with identified values (Friedman, 2004).  

An important consideration in VSD is determining the method for identifying which values to 
incorporate. Friedman et al. (2013) suggest thirteen key values essential for designing 
information systems, including human welfare, ownership and property, privacy, freedom from 
bias, universal usability, trust, autonomy, informed consent, accountability, courtesy, identity, 
calmness, and environmental sustainability. Borning and Muller (2012) and Le Dantec et al. 
(2009) argue against predefined value lists, advocating instead for a bottom-up approach to 
stakeholder value elicitation. Each approach has its strengths and weaknesses: while a 
predefined list may overlook context-specific values, bottom-up elicitation risks missing 
important ones if stakeholders cannot articulate them or crucial ones are overlooked (Umbrello 
& Van De Poel, 2021).  

 

2.3.  Value-sensitive design and AI / XAI  
In identifying values in VSD for AI technologies, it is important to consider several factors. There 
is a growing consensus that the VSD list of values is inadequate for addressing the complexities 
inherent in AI systems (Le Dantec et al., 2009; Sadek et al., 2023; Umbrello & Van De Poel, 
2021). Given the nature of AI, there is a need to adapt the existing list of values used in VSD to 
better suit the nuances of AI.  

Le Dantec et al. (2009) and Umbrello & Van De Poel (2021) criticise the top-down VSD 
approach, which relies on a list of predefined values often imparted on technology. They argue 
that these values are hard to define across various contexts and may not be universal. Dantec 
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et al. (2009) suggest a bottom-up approach, emphasising "value discovery" (Le Dantec et al., 
2009) or value elicitation, defined as understanding the values within a specific context and 
designing with sensitivity to those values (Le Dantec et al., 2009), rather than prioritising known 
values or "frontloading" (Van Der Velden & Mörtberg, 2014). While other values should be 
considered in designing AI applications through bottom-up elicitation, it is essential to 
supplement any elicited list with principles to address typical AI ethical issues. It is proposed 
that AI for Social Good (AI4SG) meanings and principles be incorporated to ensure 
comprehensive ethical considerations in AI design (Umbrello & Van De Poel, 2021). In addition, 
Umbrello & Van De Poel (2021) suggests considering values identified by AI-specific entities, 
such as those listed by the EU high-level expert group on the ethics of AI, highlighting 
fundamental values including respect for human autonomy, prevention of harm, fairness, and 
explicability (European Commission, 2019). 

2.4. Other methods of value assessment  
In the field of design, the incorporation of values is important for creating products and services 
that resonate with users and contribute positively to society. While VSD provides a robust 
framework for integrating human values into the design process, exploring additional 
methodologies that assess stakeholder values is essential.  

2.4.1. Contextual Inquiry 

Contextual inquiry involves observing and engaging with users in their natural environment to 
understand their behaviours, needs, and values (Bird et al., 2021; Raven & Flanders, 1996). By 
immersing themselves in the user's context, designers can gain insights into the values that 
shape user experiences and preferences. Through interviews, observations, and participatory 
design activities, designers can uncover implicit and explicit values influencing user interactions 
with artefacts (Salazar, 2020). 

2.4.2. Ethnographic Research 

Ethnographic research involves studying cultures and social contexts to understand different 
communities' values, norms, and practices (Strudwick, 2021). To gain an understanding of a 
particular culture or group, ethnographers immerse themselves in the daily activities and 
behaviours of the subjects they study, documenting their observations along the way (Risku et 
al., 2022). By stepping inside the lives of users, designers are able to gain a deeper 
understanding of the values that are important to diverse groups of people and integrate these 
insights into their design process (Nawrocki, 2023). Designers can use ethnographic methods 
such as participant observation, interviews, and cultural probes to explore how values manifest 
in everyday life (Strudwick, 2021). 

2.4.3. Mapping VSD onto AI4SG 

This model extends traditional VSD to address challenges specific to AI by integrating AI4SG 
principles as design norms, ensuring transparency, explainability, accountability, and 
beneficence in AI systems (Umbrello & Van De Poel, 2021). The model employs a two-tiered 
approach to ensure values in AI technology design. The first tier involves a commitment to 
contributing to social good through AI, emphasising the importance of AI applications positively 
impacting society (Umbrello & Van De Poel, 2021). The second tier entails formulating and 
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adhering to concrete AI4SG principles, which serve as ethical AI design and operation 
guidelines (Umbrello & Van De Poel, 2021). 

Recognising the significance of contextual factors, the approach emphasises the interpretation 
of values within specific applications. Contextual interpretation helps identify the values at stake 
and facilitates the translation of relevant values into design requirements tailored to the 
particular context (Umbrello & Van De Poel, 2021). 

This approach aims to mitigate ethical risks associated with AI technologies by incorporating 
AI4SG principles and contextual values into the design process. It emphasises the prevention of 
harm and actively contributing to societal good, addressing concerns about ethical "white-
washing" and ensuring that AI applications align with fundamental ethical principles (Umbrello & 
Van De Poel, 2021). 

 

2.4.4. Ethical Design 

These frameworks focus on integrating ethical considerations into the design process. Ethical 
design involves considering users' and stakeholders' ethical values and norms (Leikas et al., 
2019). It consists of identifying potential ethical issues, evaluating their implications, and making 
decisions prioritising ethical behaviour. Designers use the identified principles to guide their 
decisions and ensure their designs uphold ethical standards (Leikas et al., 2019).  

Various expert groups and initiatives have proposed ethical principles to guide the development 
and use of AI. The Ethically Aligned Design Global Initiative (2016, 2017) proposes principles 
that prioritise human well-being, environmental sustainability, and the mitigation of risks 
associated with AI while emphasising the importance of aligning AI systems with societal 
values, respecting human rights, and ensuring transparency and accountability (2016, 2017). 
The Asilomar AI Principles (Future of Life Institute, 2017) were formulated to address the 
beneficial development of AI, highlight principles such as safety, failure and juridical 
transparency, responsibility, value alignment, human values, personal privacy, liberty and 
privacy, shared benefit and prosperity, human control,  non-supervision; and avoidance of AI 
arms race. The European Group on Ethics in Science and New Technologies (EGE) (European 
Commission, 2018) proposed principles of human dignity, autonomy, responsibility, justice, 
equity, solidarity, democracy, the rule of law and accountability, security, safety, bodily and 
mental integrity, data protection and privacy, and sustainability. The European Commission's 
High-Level Expert Group on AI has formulated four principles based on fundamental rights that 
emphasise a human-centric approach to AI development, which includes respect for human 
autonomy, prevention of harm, fairness, and explicability. 

Several other organisations and initiatives, including the Association for Computing Machinery 
(ACM) (Rossi et al., 2023), Google (Google AI, 2023), and the United Nations (United Nations 
System, 2022), have also introduced similar principles and guidelines regarding the ethics of AI. 
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